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I. Introduction 

Earth observation from space is sometimes enhanced by the reflection ("glint") of the Sun 

off of the ocean. Consequently, it is of operational interest to know the location of the 

glint point, the point on the Earth marking the center of the Sun's glint. 

Figure 1 exhibits the trigonometry involved. A cross-section of the Earth is shown; the 

plane of the cross-section has been chosen so that it includes the centers of the Sun, the 

Earth and the spacecraft. The horizontal segment from the Earth's center to its surface 

points toward the center of the Sun. Arguments are measured counterclockwise, with the 

horizontal segment representing an argument of zero. β  represents the argument of the 

spacecraft, while α  represents the argument of the glint point (which must lie in the 

plane of the drawing.) The distance unit is one Earth radius, and λ  represents the 

spacecraft's altitude.  

 

II. Assumptions 

The Sun is treated as though it were at infinite distance, and its rays of light are assumed 

to be parallel to one another. The Earth is treated as though it were perfectly circular, and 

the oceans as though they would reflect like mirrors. No atmospheric refractive effects 

are assumed. 
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Figure 1. The Trigonometry of the Glint Problem. 

 

III. Analysis 

The Law of Sines implies  
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Writing , we get x = sin2 α
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Rearranging yields 
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Squaring both sides, we get 
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Again squaring both sides, we get 
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The Quartic Equation 

The foregoing analysis yields the following quartic equation in x : 
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For each real root  satisfying 0xi ≤ ≤xi , there is a unique corresponding candidate αi  

such that 0 2≤ ≤α π
i  and , i.e. xi i= sin2α αi x= arcsin i . Upon testing each of these (up 

to four) candidate αi 's in the equation ( )sin
sin
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, one will be found to fit. 
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