A Quantum Theory of Speciation

Kerry M. Soileau

January 14, 2012

ABSTRACT

We propose a theoretical model of quantum speciation among elements of a finite dimensional Hilbert space. The potential for species diversity and the current environment are represented by linear operators satisfying a compatibility criterion. A method for calculating probabilities of production of individuals is defined.

INTRODUCTION

Let *H* be a Hilbert space *H* with inner product $\langle \cdot, \cdot \rangle$ and finite dimension *n*. We say that the ordered pair (A, B) is compatible if *A* and *B* are linear operators on *H*, *B* is Hermitian and the composition *AB* has all real eigenvalues and a unique largest eigenvalue. By C_H we mean the collection of compatible ordered pairs.

Fix $(E, S) \in C_H$. Let the environment be represented by E, and the species by S. The interaction of the species with the environment is represented by the linear operator R = ES. Let the unit eigenvectors of S be denoted by $V(S) = \{s_1, s_2, s_3, \dots, s_n\}$. This set represents the "individuals" genetically possible for the species represented by S. Note that V(S) forms an orthonormal basis for H. Let the unit eigenvectors of R be denoted by V(R), and let $r \in V(R)$ be the eigenvector with largest eigenvalue. The probability of production of the

individual s_i is defined to be $|\langle r, s_i \rangle|^2$ for each $i = 1, 2, 3, \dots, n$.

EXAMPLE

Take the Hilbert space to be \mathbb{R}^8 with the usual topology and inner product. Let the

environment be represented by the matrix

	.587466	.383252	-495393	.457811	877964	.533748	.582221	.618521	}
	.383252	.251454	323737	.299177	573745	.348802	.380478	.404201	
	495393	323737	3.01535	386717	-1.39056	451316	49136	525113	
E =	.457811	.299177	386717	.358379	685362	.416658	.454497	.482834	
L –	877964	573745	-1.39056	685362	3.07425	799734	87093	929968	'
	.533748	.348802	451316	.416658	799734	.487769	.529884	.562921	
	.582221	.380478	49136	.454497	87093	.529884	.578106	.614045	
	.618521	.404201	525113	.482834	929968	.562921	.614045	.658324))

and let the species be represented by the matrix

	(4.62403	322869	943941	408346	367027	203681	-1.32341	.0671462
	322869	7.96912	090276	0390531	0351014	0194795	126568	.00642168
	943941	090276	6.10552	.434195	.785226	2763	7169	.0493878
c _	408346	0390531	.434195	5.32538	.123354	10429	901593	153763
5 =	367027	0351014	.785226	.123354	2.96294	.247461	.611623	.0879236
	203681	0194795	2763	10429	.247461	3.62061	00487578	.939697
	-1.32341	126568	7169	901593	.611623	00487578	4.03868	116322
	.0671462	.00642168	.0493878	153763	.0879236	.939697	116322	1.35372)

The interaction of the species with the environment is given by the matrix

	2.35793	2.84206	-4.6387	1.18407	-2.62038	2.25563	.856288	1.141
	1.53755	1.86545	-3.03084	.774009	-1.7122	1.47416	.560318	.745597
	-3.65727	-2.56064	18.0983	135942	-2.06533	-3.1548	-3.88812	-1.02702
D = EC	1.83664	2.2188	-3.61992	.929958	-2.04513	1.76086	.668573 1.3243	.890485
K = ES =	-2.15729	-4.12455	-4.69376	-2.48182	7.46242	-2.35872	1.3243	-1.66475
	2.14204	2.5869	-4.22474	1.07751	-2.38641	2.06025	.780414	1.04016
	2.33547	2.82173	-4.601	1.17609	-2.59863	2.23955	.851902	1.13274
	2.4863	2.99816	-4.91025	1.24665	-2.77667	2.3845	.903232	1.21092

The eigenvalues of the matrix R are given by

 $\lambda(R) = \{22.6344, 12.1662, .0154741, .00676189, .00604594, .00505311, .00275748, .000398656\}$

The eigenvectors of the matrix R are given by

$$V(R) = \begin{cases} \left(-.262413, -.171502, .806404, -.204812, -.0871612, -.238993, -.260346, -.277481\right), \\ \left(.24918, .162898, .284726, .194527, -.781302, .226931, .247237, .263453\right), \\ \left(-.296877, -.358511, -.238824, -.313701, -.397312, -.152791, -.392298, .5411\right), \\ \left(.274745, -.523329, .119413, .470479, .0654829, .499673, .264841, -.301547\right), \\ \left(-.464368, .0682246, .075601, -.296825, .0802433, .817321, .0696652, -.0811256\right), \\ \left(-.699415, .0496956, -.208304, .539336, -.105897, -.232158, -.189755, .270105\right), \\ \left(.0279293, .0443105, -.0826777, -.0280428, -.0627183, .325099, -.392075, -.852226\right), \\ \left(.111177, .0799963, .0225389, .08178, .38814, .0415225, -.495561, .759004\right) \end{cases}$$

The eigenvector of R with largest eigenvalue is

(-.262413, -.171502, .806404, -.204812, -.0871612, -.238993, -.260346, -.277481).

The eigenvectors of the matrix S are given by

$$V(S) = \begin{cases} (.0952029, -.995458, 0, 0, 0, 0, 0, 0), \\ (-.345654, -.0330574, .82615, .382476, .182412, -.0475414, -.122421, -.00988729), \\ (.558176, .0533825, -.0405465, .473144, -.196446, -.0886957, -.642993, -.0135071), \\ (.39819, .0380819, .478511, -.745893, -.00662532, -.0772517, -.218207, .0322277), \\ (.0295167, .0028229, .0155715, -.00841796, .152084, .913988, -.160965, .338222), \\ (-.499804, -.0477999, -.00603601, -.173625, -.771892, .075417, -.340249, .0213282), \\ (-.386619, -.0369752, -.292338, -.205905, .556007, -.162326, -.617925, -.0630506), \\ (-.0345529, -.00330455, -.0334439, .0296146, -.000591584, -.341312, .021189, .938007) \end{cases}$$

The probabilities of production are as shown in the following table:

Individual					
\otimes	(.0952029,995458, 0, 0, 0, 0, 0, 0)	.021240			
X	(345654,0330574, .82615, .382476, .182412,0475414,122421,00988729)	.510263			
×	(.558176, .0533825,0405465, .473144,196446,0886957,642993,0135071)	.005740			
×	(.39819, .0380819, .478511,745893,00662532,0772517,218207, .0322277)	.244557			
×	(.0295167, .0028229, .0155715,00841796, .152084, .913988,160965, .338222)	.077054			
Å	(499804,0477999,00603601,173625,771892, .075417,340249, .0213282)	.091183			
×	(386619,0369752,292338,205905, .556007,162326,617925,0630506)	.006876			
	(0345529,00330455,0334439, .0296146,000591584,341312, .021189, .938007)	.043087			

MOTIVATION

In quantum mechanics, observables are represented by self-adjoint operators on a Hilbert space. Thus in proposing a model of quantum speciation, it is natural to regard a species as a whole as some self-adjoint operator S. In the quantum mechanical setting, each possible

measurement of an observable corresponds to a unit eigenvector and eigenvalue of this operator, so by analogy we regard each unit eigenvector of the species linear operator S to represent a possible individual. We postulate that each species will have only finitely many possible individuals, thus we assume that S, and also the Hilbert space, have finite dimension. Thus S is in fact Hermitian. We may then regard the eigenvalues of each unit eigenvector (i.e. individual) of S as representing the reproductive strength of that individual. We model the influence of the environment by means of a linear operator E which is composed with S to produce the resultant operator R = ES. We require that (E, S) be compatible, in the sense defined above, so that R will have all real eigenvalues and a unique largest eigenvalue.

The definition of probability of production was motivated by the following observation. If $\vec{\varphi}$ is a random vector in \mathbb{R}^n , how may we determine the unit vector $\hat{v} \in \mathbb{R}^n$ which maximizes the expectation value $E(\vec{\varphi} \cdot \hat{v})^2$? It's not difficult to show that this is accomplished by taking \hat{v} to

be an eigenvector with maximal eigenvalue of the matrix $\begin{pmatrix} E\varphi_1\varphi_1 & E\varphi_1\varphi_2 & \cdots & E\varphi_1\varphi_n \\ E\varphi_2\varphi_1 & E\varphi_2\varphi_2 & \cdots & E\varphi_2\varphi_n \\ \vdots & \vdots & \ddots & \vdots \\ E\varphi_n\varphi_1 & E\varphi_n\varphi_2 & \cdots & E\varphi_n\varphi_n \end{pmatrix}.$ The

maximal value of $E(\vec{\varphi}\cdot\hat{v})^2$ is then equal to this eigenvalue. Thus in the case that there exists a

random vector
$$\vec{\varphi}$$
 such that $R = \begin{pmatrix} E\varphi_1\varphi_1 & E\varphi_1\varphi_2 & \cdots & E\varphi_1\varphi_n \\ E\varphi_2\varphi_1 & E\varphi_2\varphi_2 & \cdots & E\varphi_2\varphi_n \\ \vdots & \vdots & \ddots & \vdots \\ E\varphi_n\varphi_1 & E\varphi_n\varphi_2 & \cdots & E\varphi_n\varphi_n \end{pmatrix}$, $E(\vec{\varphi}\cdot\hat{v})^2$ is maximized for

 $\hat{v} = \hat{v}_{\max}$, where \hat{v}_{\max} is the largest eigenvalue of R. We may express \hat{v}_{\max} as a unique linear combination of the eigenvectors (individuals) of S, like so: $\hat{v}_{\max} = \sum_{i=1}^{N} (\hat{v}_{\max} \cdot \hat{s}_i) \hat{s}_i$. Again following the pattern seen in the quantum mechanical setting, we define the probability of "observing", i.e. producing the individual represented by \hat{s}_i as $|\langle \hat{v}_{\max}, \hat{s}_i \rangle|^2 = (\hat{v}_{\max} \cdot \hat{s}_i)^2$. Although the motivation involves Hermitian operators R, this is not assumed in the definition of compatible operators.

REFERENCE

Carson, Hampton L., Chromosomal Tracers of Founder Events, *Biotropica*, Vol. 2, No. 1 (Jun., 1970), pp. 3-6.